• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Additive Manufacturing (AM)

Additive Manufacturing (AM)

AM showcases the latest technology and industry developments with in-depth case studies, resources, interviews with experts and events.

    • CHANNEL
      • Aerospace
      • Automotive
      • Energy
      • Medical
      • Innovation
    • TOPICS
      • Design
      • Management
      • Materials
      • Post Processing
      • Processes
      • Quality Management Systems
      • Regulatory & Standards
      • Software
      • Workforce Development
    • NEWS
    • EVENTS
      • Conferences
      • Virtual Events
      • Webinars
      • Industry Events
      • On-Demand
      • Add Your Event
    • MEDIA
      • AM News LIVE
      • AM Voices
      • Podcast
      • Video
    • RESOURCES

    NASA Tests Provide Rare Opportunity to Get 3-D Printed Part Comparison Data

    The NASA insignia is one of the agency’s best-known symbols. Image Credit: NASA

    By NASA

    Sept. 11, 2015-A key part of the F-1 engine — the rocket engine that propelled the Saturn V and sent men to Moon — just completed a series of tests that will provide new data for today’s rocket engine designers. While this rocket engine component is not currently being flown, engineers were able to test a 1960’s era rocket engine part, the gas generator, in 2013, and then make one with additive manufacturing and test it on the same stand – giving NASA engineers a direct one-to-one comparison of a key rocket component.

    The gas generator to an F-1 engine is test-fired this September at NASA's Marshall Space Flight Center in Huntsville, Alabama. Although the engine was originally built to power the Saturn V rockets during America's missions to the moon, this test article had new parts created using additive manufacturing, or 3-D printing, to test the viability of the technology for building new engine designs. (Photo Credit: NASA)
    The gas generator to an F-1 engine is test-fired this September at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Although the engine was originally built to power the Saturn V rockets during America’s missions to the moon, this test article had new parts created using additive manufacturing, or 3-D printing, to test the viability of the technology for building new engine designs. (Photo Credit: NASA)

    “This test gave NASA the rare opportunity to test a 3-D printed rocket engine part, an engine part for which we have lots of data, including a test done three years ago with modern instrumentation,” said Chris Protz. “This adds to the database we are creating by testing injectors, turbo pumps and other 3-D printed rocket engine parts of interest to both NASA and industry.”

    Additive manufacturing layers metallic powders to form engine parts, but much is still unknown about the ability to produce rocket engine parts reliable enough for use on launch vehicles carrying humans. Over the last few years, NASA engineers have built and tested a variety of complex rocket components manufactured with 3-D printing processes. The part put to the test in this particular series, a gas generator, supplies power to fuel pump to deliver propellant to the engine.

    The gas generator produces around 30,000 pounds of thrust and was fired up on the same test stands at NASA’s Marshall Space Flight Center in Huntsville, Alabama where Protz and his team tested a vintage F-1 gas generator in 2013. New cutting-edge instruments on the stand measured performance and combustion properties, providing engineers with new data on old hardware. The gas generator tests allow a direct comparison of the F-1 engine component built with traditional manufacturing — welding and forging — to a similar F-1 engine component with parts built with additive manufacturing.

    NASA conducted this test series for Dynetics in Huntsville and its partner Aerojet Rocketdyne in Canoga Park, California, who built the gas generator and is examining future technologies and their applicability to future propulsion systems.

    The results from these tests of a 3-D printed F-1 gas generator adds more information to help NASA and the aerospace industry reduce the risks associated with using 3-D printing to make future engine parts, especially for future versions of spacecraft like NASA’s new Space Launch System.

    The Space Launch System will provide an entirely new capability for human exploration, with the first version of the rocket, referred to as Block 1, capable of launching 70 metric tons to low-Earth orbit. This first configuration will be powered by twin boosters and four RS-25 engines. The next planned evolution of the SLS, Block 1B, would use a more powerful exploration upper stage to enable more ambitious missions with a 105-metric-ton lift capacity.

    Ultimately, a later evolution, Block 2, will add a pair of advanced solid or liquid propellant boosters to provide an unprecedented 130-metric-ton lift capability to enable missions even farther into our solar system, including Mars.

    “NASA is exploring many technologies to enhance the Space Launch System as it evolves for use in a variety of missions,” said Sam Stephens, SLS Advanced Development Task Lead at Marshall, where the SLS Program is managed. “If it proves to be a viable option, additive manufacturing may help us build future propulsion systems. With this testing, NASA is helping the community and the nation’s aerospace companies stay at the forefront of advanced technologies.”

    Additive manufacturing is one of many technologies that could help provide affordable propulsion systems for the rocket that will take humans on the journey to Mars. This additive manufacturing test project is one of many projects from industry and academia SLS is funding to inform innovative and affordable solutions to evolve the launch vehicle from its initial configuration to its full lift capacity capable of sending humans farther into deep space than ever before.

    Contacts
    Kimberly Henry
    Marshall Space Flight Center
    Huntsville, Alabama USA
    256-544-0034
    [email protected]

    Tracy McMahan
    Marshall Space Flight Center
    Huntsville, Alabama
    256-544-0034
    [email protected]

    Last Updated: Sept. 16, 2015
    Editor: Jennifer Harbaugh

    Source: NASA

    related /

  • Authentise logo Authentise Acquires Elements to Deliver Data-Driven Flexibility Across Manufacturing
  • Filed Under: News Tagged With: Aerojet Rocketdyne, Marshall Space Flight Center, NASA, SLS, Space Launch System

    Primary Sidebar

    events /

    upcoming webinars /

    • There are no upcoming events.

    on demand /

    • SOLIDWORKS Certification Tips and Tricks

      January 24 @ 11:00 am - 12:00 pm EST
    • Is there really a use for additive manufacturing in commercial vehicles?

      December 7, 2022 @ 1:00 pm - 2:00 pm EST
    • Development of Metal Additive Manufacturing for Naval Shipbuilding

      December 1, 2022 @ 1:00 pm - 2:00 pm EST

    Footer

    AM-logo_RGB_500_white

    With dozens of innovative products, materials, software, and applications being launched constantly, you can rely on AdditiveManufacturing.com to keep you ahead of the curve.

    stay connected /

    recent /

    • Dimension Inx Raises $12M Series A to Accelerate Commercialization of New Generation of Regenerative Therapeutics
    • C3Nano Announces Industry’s First Highly Conductive, Low Temperature Curing, Flexible and Stable Printable Ink Solution
    • BCIT and Teck Open Teck Copper Innovation Hub
    • Freeform Emerges from Stealth, Announcing Revolutionary Software-Defined Autonomous Printing Factories
    • Cloning Metal Parts for Space and Earth: Software for modeling metal parts before 3D printing speeds development, cuts costs for NASA and business
    • Tech Soft 3D Elevates Tyler Barnes to President
    • 3D Systems & Stewart-Haas Racing Accelerate Innovation with Multi-year Partnership
    • CairnSurgical Announces First Patients Treated in Europe With Breast Cancer Locator System

    topics /

    • Applications
    • Design
    • Materials
    • Post Processing
    • Processes
    • Quality Management Systems
    • Regulatory & Standards
    • Software

    media /

    • Watch On-Demand: AM News LIVE: EP22 – Anne Pauley & Michael Molitch-Hou – CES, TIPE, AMS – Monday, January 23rd 2023
    • AM Materials Chat: 6K onsite at Formnext 2022 – AM Voices Podcast – Frank Roberts, President of 6K Additive
    • Watch On-Demand: AM News LIVE: EP21 – Sintavia – Brian R. Neff – Monday, January 9th 2023
    • Formnext 2022 flashback: Uniformity Labs, CEO Adam Hopkins on LPBF materials for 3D printing
    • AM Materials Chat: Uniformity Labs onsite at Incodema3D – AM Voices video podcast – Adam Hopkins, CEO at Uniformity Labs
    • AM Materials Chat: Elementum3D onsite at Incodema3D for AM Voices video podcast
    • AM Video Interview: Dr. Jason Rolland, SVP of Materials at Carbon
    • Watch On-Demand: AM News LIVE, EP20 – End Of Year Episode – 2022 Review with Friends

    Copyright © 2023 Metrix Connect, LLC

    • Advertise
    • About Us
    • Privacy Policy
    • Terms of Use
    • Editorial Guidelines
    • Code of Conduct
    • Contact