• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Additive Manufacturing (AM)

Additive Manufacturing (AM)

AM showcases the latest technology and industry developments with in-depth case studies, resources, interviews with experts and events.

    • CHANNEL
      • Aerospace
      • Automotive
      • Energy
      • Medical
      • Innovation
    • TOPICS
      • Design
      • Management
      • Materials
      • Post Processing
      • Processes
      • Quality Management Systems
      • Regulatory & Standards
      • Software
      • Workforce Development
    • NEWS
    • EVENTS
      • Conferences
      • Virtual Events
      • Webinars
      • Industry Events
      • On-Demand
      • Add Your Event
    • MEDIA
      • AM News LIVE
      • AM Voices
      • Podcast
      • Video
    • RESOURCES

    Carnegie Mellon Researchers Hack Off-the-Shelf 3-D Printer Towards Rebuilding the Heart

    Image courtesy of Carnegie Mellon University
    • Models of hearts, arteries, bones and brains are 3-D printed out of biological materials

    PITTSBURGH—As of this month, over 4,000 Americans are on the waiting list to receive a heart transplant. With failing hearts, these patients have no other options; heart tissue, unlike other parts of the body, is unable to heal itself once it is damaged. Fortunately, recent work by a group at Carnegie Mellon could one day lead to a world in which transplants are no longer necessary to repair damaged organs.

    “We’ve been able to take MRI images of coronary arteries and 3-D images of embryonic hearts and 3-D bioprint them with unprecedented resolution and quality out of very soft materials like collagens, alginates and fibrins,” said Adam Feinberg, an associate professor of Materials Science and Engineering and Biomedical Engineering at Carnegie Mellon University. Feinberg leads the Regenerative Biomaterials and Therapeutics Group, and the group’s study was published in the October 23 issue of the journal Science Advances.

    Adam Feinberg, associate professor of biomedical engineering and materials science and engineering, describes and demonstrates his work in 3-D printing soft materials. (Video courtesy of the Carnegie Mellon University College of Engineering)

    “As excellently demonstrated by Professor Feinberg’s work in bioprinting, our CMU researchers continue to develop novel solutions like this for problems that can have a transformational effect on society,” said Jim Garrett, Dean of Carnegie Mellon’s College of Engineering. “We should expect to see 3-D bioprinting continue to grow as an important tool for a large number of medical applications.”

    Traditional 3-D printers build hard objects typically made of plastic or metal, and they work by depositing material onto a surface layer-by-layer to create the 3-D object. Printing each layer requires sturdy support from the layers below, so printing with soft materials like gels has been limited.

    “3-D printing of various materials has been a common trend in tissue engineering in the last decade, but until now, no one had developed a method for assembling common tissue engineering gels like collagen or fibrin,” said TJ Hinton, a graduate student in biomedical engineering at Carnegie Mellon and lead author of the study.

    Bio-printing technology  (Photo courtesy of the College of Engineering at Carnegie Mellon University)
    Bioprinting soft materials in gel bath  (Photo courtesy of the Carnegie Mellon University College of Engineering)

    “The challenge with soft materials — think about something like Jello that we eat — is that they collapse under their own weight when 3-D printed in air,” explained Feinberg. “So we developed a method of printing these soft materials inside a support bath material. Essentially, we print one gel inside of another gel, which allows us to accurately position the soft material as it’s being printed, layer-by-layer.”

    One of the major advances of this technique, termed FRESH, or “Freeform Reversible Embedding of Suspended Hydrogels,” is that the support gel can be easily melted away and removed by heating to body temperature, which does not damage the delicate biological molecules or living cells that were bioprinted. As a next step, the group is working towards incorporating real heart cells into these 3-D printed tissue structures, providing a scaffold to help form contractile muscle.

    Bioprinting is a growing field, but to date, most 3-D bioprinters have cost over $100,000 and/or require specialized expertise to operate, limiting wider-spread adoption. Feinberg’s group, however, has been able to implement their technique on a range of consumer-level 3-D printers, which cost less than $1,000 by utilizing open-source hardware and software.

    “Not only is the cost low, but by using open-source software, we have access to fine-tune the print parameters, optimize what we’re doing and maximize the quality of what we’re printing,” Feinberg said. “It has really enabled us to accelerate development of new materials and innovate in this space. And we are also contributing back by releasing our 3-D printer designs under an open-source license.”

    About the College of Engineering
    The College of Engineering at Carnegie Mellon University is a top-ranked, engineering college that is known for our intentional focus on cross-disciplinary collaboration in research. The College is well known for working on problems of both scientific and practical importance.

    Our acclaimed faculty have a focus on innovation management and engineering to yield transformative results that will drive the intellectual and economic vitality of our community, nation and world. The College offers graduate and undergraduate degree programs in biomedical engineering, chemical engineering, civil and environmental engineering, electrical and computer engineering, engineering and public policy, information networking, materials science and engineering and mechanical engineering. Our “maker” culture is ingrained in all that we do, leading to novel approaches and transformative results.

    College of Engineering Carnegie Mellon University
    5000 Forbes Ave.
    Pittsburgh, PA 15213
    www.engineering.cmu.edu

    Contact
    Daniel Tkacik, Ph.D.
    Communications Manager
    College of Engineering / CyLab
    Carnegie Mellon University
    Office: 412-268-1187
    [email protected]

    Source: Carnegie Mellon University College of Engineering

     

     

     

     

     

    related /

  • 6K Freemelt 3D Printer Platform 6K Additive and Freemelt Establish Strategic Partnership to Develop and Commercialize Refractory Metal Powder for the Freemelt 3D Printer Platform
  • Sciaky logo Sciaky, Inc. to Deliver World’s Largest Metal Electron Beam DED 3D Printer, a Customized EBAM® 300 Series Additive Manufacturing System, to Turkish Aerospace Industries (TAI)
  • B9Creations Unveils its Largest-format 3D Printer Platform
  • Primary Sidebar

    events /

    Nov 2
    November 2 @ 8:00 am - November 3 @ 5:00 pm EDT

    AM Medical Summit 2022

    Minneapolis MN
    View Calendar

    upcoming webinars /

    Aug 25
    2:00 pm - 3:00 pm EDT

    Generative Design x Digital Manufacturing at NASA for AM & CNC

    View Calendar

    on demand /

    • How to Take an Idea to Production with Additive Manufacturing

      August 18 @ 2:00 pm - 3:00 pm EDT
    • Driving Transportation Innovation with Additive Manufacturing

      August 10 @ 1:00 pm - 2:00 pm EDT
    • Print, Replace, & Repeat: Distributed Manufacturing with Metal AM

      July 20 @ 2:00 pm - 3:00 pm EDT

    Footer

    With dozens of innovative products, materials, software, and applications being launched constantly, you can rely on AdditiveManufacturing.com to keep you ahead of the curve.

    stay connected /

    recent /

    • Mass Customization: A Path To Customer Choice & Personalization
    • Watch On-Demand: AM News LIVE, EP11 – August 8th
    • Energy, Clinical Trials, Executives & Other News for Week of August 1
    • Wire Arc Additive Manufacturing Collaboration with GA-ASI for UAS Tooling
    • 3D Systems Names Michael Turner as Chief Financial Officer
    • Dale Baker, ex-General Electric Executive, Joins Nano Dimension as President of the Americas
    • BellaSeno Starts Two Clinical Trials of Resorbable Scaffold Implants
    • Sakuu Opens New Battery Printing and Engineering Facility

    topics /

    • Applications
    • Design
    • Materials
    • Post Processing
    • Processes
    • Quality Management Systems
    • Regulatory & Standards
    • Software

    media /

    • Watch On-Demand: AM News LIVE, EP11 – August 8th
    • Watch On-Demand: AM News LIVE, Episode 10
    • The Application Engineering and Metal 3D Printing Journey
    • Aerospace Contract Manufacturing and Beyond
    • Watch On-Demand: AM News LIVE, Episode 9
    • Astoria Pacific Uses EPX 86FR to Solve a Burning Problem
    • Metal Additive Manufacturing, Quality and Qualification
    • Improving Materials for Additive Manufacturing

    Copyright © 2022 Metrix Connect, LLC

    • Advertise
    • About Us
    • Privacy Policy
    • Terms of Use
    • Editorial Guidelines
    • Code of Conduct
    • Contact