- Surgeons treat 53yr old woman turned down by several other hospitals due to illness complexity, with surgical 3D printed models integral to understanding the cause of the issue and best determining the type of treatment required to successfully operate
MINNEAPOLIS & REHOVOT, Israel–November 15, 2017 — (BUSINESS WIRE)–Stratasys Ltd. (Nasdaq:SSYS), a global leader in applied additive technology solutions, today announced that surgeons at the University of Mainz Cardiothoracic and Vascular Surgery Department are using Stratasys PolyJet 3D printing to transform the hospital’s surgical planning process for complex, life-critical vascular cases. According to the University hospital, the use of 3D printed models for surgical planning has seen a significant reduction in costs at the institution when designing and fitting implants – while the hospital reports relevant time-savings during surgery, leading to an improvement in patient outcomes.
As an internationally recognized Center of Excellence when it comes to its Cardiothoracic and Vascular Surgery, the University Hospital Mainz provides research and patient care in areas related to the heart, thorax and blood vessels in the human body. The hospital treats several patients suffering from life-threatening aortic illnesses needing immediate attention and complex, patient-specific surgical treatment.According to Prof. Dr. Bernhard Dorweiler, Head of the Department of Vascular Surgery at University Hospital Mainz, the adoption of 3D printing is playing a crucial role in elevating the standard of patient care.
“On average, CT scans with 1000-2000 images can be made per vascular-related patient case, which the surgeons use to analyze and diagnose the illness. This can be ambiguous and time-consuming when the issue is complex,” says Prof. Dr. Dorweiler. “With 3D printed models, we can quickly understand the individual patient anatomy and best determine the type of treatment required to successfully treat it.”
This was exemplified in a recent case whereby Prof. Dr. Dorweiler and his team were approached by a 53-year-old woman who had already been turned down by several other hospitals in Germany and beyond – such was the complexity around the illness and the potential risk of operation. Due to an aortic malformation close to the heart, the patient was suffering from a bulging blood vessel on her neck. Recognizing the need for urgent medical attention, Prof. Dr. Dorweiler and his team reviewed CT Scans, however the results did not provide the level of clarity required to make an accurate diagnosis.
“Looking through the CT Scans, it was impossible to clearly visualize the anatomy,” says Prof. Dr. Dorweiler. “So we decided to 3D print a model, and it was then for the first time that it became clear what the origin and magnitude of the problem was. Not only did we use the model to explain our findings to the patient to increase her compliance for the planned 3-step operation, but we even took it into each of the three surgeries as a point of reference during operation, which was crucial to the successful outcome.”
Practice-makes-perfect approach saves time and money
To date, treatment of complex aortic illnesses with the endovascular method has been a difficult procedure, with surgeons relying on a monitor to implant a small wire-mesh tube (stent) through the arteries to be placed at the affected area of the aorta. In a recent case, Prof. Dr. Dorweiler and his team faced this challenge with a very complex case of aortic arch aneurysm. Requiring an intricate implant, the team undertook a pre-operative simulation of the surgery using a stent prototype and 3D printed aortic arch model of the patient. This process has since been repeated across several cases, with surgeons able to practice surgery on the model repeatedly ensuring the correct design and fit of the stent implant the first time – significantly reducing time and cost in the operating theatre.
“As pointed out in current published studies, there are savings in operating time of 5-45 minutes when using 3D printed models prior to surgery,” says Prof. Dr. Dorweiler. “Research is still ongoing, but if you take an average surgery time of 2-4 hours, you are looking at time savings of up to 40%. When you are dealing with complex vascular cases every day, these time-savings can be the difference between life and death.”
Training future vascular surgeons for success
At the forefront of German medical research and development, the Vascular Surgery Department at the University Hospital Mainz has an extensive training facility, in which 3D printing is integral.
“We use the Stratasys Eden260VS 3D Printer in our BiomaTicS research platform to produce models of aortic anatomies from real-life cases, so that we can use them to teach future vascular surgeons how to successfully perform complex endovascular surgeries,” says Prof. Dr. Dorweiler. “With the ability to 3D print patient-specific aortic models in clear transparent material, the trainees can practice endovascular procedures and learn difficult Wire-Skills using the accurate replicas of blood vessels. For healthcare, it is crucial that we continue to leverage the capabilities of 3D printing for medical training, education and research for future breakthrough-implementation.”
Rene Martin, Business Manager Healthcare EMEA, Stratasys, concludes: “The pioneering use of 3D printing witnessed today underpins why the University Hospital Mainz is at the forefront of German medical research and development. Leveraging high resolution 3D printing, the ability to replicate patient-specific anatomy is enabling physicians and surgeons to quickly plan, practice and determine life-saving surgical approaches – not only to improve patient care and outcomes, but also mitigate risk and reduce costs.”
About Stratasys
Stratasys (NASDAQ: SSYS) is a global leader in applied additive technology solutions for industries including Aerospace, Automotive, Healthcare, Consumer Products and Education. For nearly 30 years, a deep and ongoing focus on customers’ business requirements has fueled purposeful innovations—1,200 granted and pending additive technology patents to date—that create new value across product lifecycle processes, from design prototypes to manufacturing tools and final production parts. The Stratasys 3D printing ecosystem of solutions and expertise—advanced materials; software with voxel level control; precise, repeatable and reliable FDM and PolyJet 3D printers; application-based expert services; on-demand parts and industry-defining partnerships—works to ensure seamless integration into each customer’s evolving workflow. Fulfilling the real-world potential of additive, Stratasys delivers breakthrough industry-specific applications that accelerate business processes, optimize value chains and drive business performance improvements for thousands of future-ready leaders around the world.
Corporate Headquarters: Minneapolis, Minnesota and Rehovot, Israel.
Online at: www.stratasys.com, http://blog.stratasys.com and LinkedIn.
Stratasys
Arita Mattsoff, +972-74-745-4000 (IL)
arita@stratasys.com
Joe Hiemenz, +1-952-906-2726 (US)
joe.hiemenz@stratasys.com
or
North America
Stratasys
Craig Librett, +1-518-424-2497
Craig.Librett@stratasys.com
or
Europe
Incus-Media
Jonathan Wake / Miguel Afonso, +44-1737-215200
stratasys@incus-media.com
or
Asia Pacific and Greater China
Stratasys AP
Sophie Su, +852 3944 8888
Media.ap@stratasys.com
or
Japan and Korea
Stratasys Japan
Aya Yoshizawa, +81 90 6473 1812
aya.yoshizawa@stratasys.com
or
Brazil
GPCOM
Clezia Martins Gomes, +55 (11) 3129-5158
clezia@gpcom.com.br
or
Mexico, Central America, Caribe and South America
Stratasys Mexico
Yair Canedo, +52 55 4169 4181
yair.canedo@stratasys.com
Source: Stratasys Ltd.