May 6, 2022 — Elementum 3D has been awarded a Direct to Phase II SBIR contract from DARPA to develop a robust, economical additive manufacturing (AM) process to fabricate complex-shaped components from the refractory metal rhenium (Re).
As a refractory metal, rhenium can withstand high heat and has the 2nd highest melting point of all metal elements behind only tungsten. For this reason, rhenium is sought after as a component material capable of increasing the performance and extending the life of rocket and missile propulsion systems.
While rhenium has significant usage as an alloying constituent in nickel-based superalloys, its use as a base alloy is limited due to difficulty in traditional processing of this material. Forming rhenium into the complex shapes necessary for these applications is currently costly because of its high melting temperature, and it is an extremely difficult material to machine as it undergoes extensive work hardening. Additionally, some geometries are simply inaccessible with available machining and forming methods. A major initiative of the awarded SBIR is to research and develop an AM fabrication route to print components with geometrical features that cannot otherwise be produced by traditional manufacturing processes including powder metallurgy (PM) and electrical discharge machining (EDM).
Elementum 3D’s work on this DARPA project aims to help develop and expand the market for rhenium for AM processing so that the material can be used to benefit a wide range of advanced propulsion and hypersonics applications at the lowest possible cost. Should the base effort prove successful, an “option period” contract may be exercised at DARPA’s discretion to perform component-level fabrication and testing that will help encourage commercial adoption of rhenium for AM.