Airbus Group – Pioneering Bionic 3D Printing; Learning from Nature

Published by Airbus Group | www.airbusgroup.com/Airbus-stories

  • Autodesk and Airbus have unveiled the world’s largest 3D printed airplane cabin component: a ‘bionic partition’ to separate the passenger cabin from the galley.The innovative design mimics the organic cellular structure and bone growth found in living organisms.
  • A partition designed to save weight (and fuel)

Breakthrough for Future Airbus A320
For passengers, it’s a distinctly unremarkable part of a plane’s interior, but for aircraft manufacturers it’s one of many significant pieces in a major engineering puzzle to minimise weight, while retaining great design and infrastructure safety.

Fixed between the passenger seating area and plane’s galley, this particular partition is a dividing wall that in some seating configurations will be used to support the jumpseats used by cabin crews during takeoff and landing. As such, it needs to be strong, which, with traditional materials and manufacturing processes, makes it heavy and bulky.

The new bionic partition’s structure represents a radical departure in that it has dispensed with much of the material, weight and bulk inherent to traditional design. Together, Autodesk and Airbus have harnessed the expertise of 3D printing experts of APWorks, an Airbus Group subsidiary, in a design collaboration with experts on generative design from TheLiving, an Autodesk Studio.

Airbus' bionic partition was showcased at the Autodesk University (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Airbus’ bionic partition was showcased at the Autodesk University (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Mimicking Cells and Bones’ Structure
The component was created with custom algorithms that generated a design that mimics cellular structure and bone growth and then produced using 3D printing techniques.

A Disruptive Potential
The result of the project creates sounded expectations: a partition that is structurally very strong but also lightweight, weighing 45% (30 kg) less than current designs. This makes the bionic partition a groundbreaking development for a sector in which less weight equals less fuel consumption.

This pioneering design and manufacture process renders the structure stronger and more lightweight than would be possible using traditional processes. Airbus' bionic partition was showcased at the Autodesk University (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

This pioneering design and manufacture process renders the structure stronger and more lightweight than would be possible using traditional processes. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

When applied to the entire cabin and to the current backlog of A320 planes, Airbus estimates that the new design approach could save up to 465,000 metric tonnes of CO2 emissions per year.

Photo courtesy of Airbus Group, Copyright © Airbus Group 2016

Photo courtesy of Airbus Group, Copyright © Airbus Group 2016

Test Flight in 2016
The first phase of testing of the partition has been successfully completed. Further testing will be conducted in 2016, including a test flight on board an A320.

Scalmalloy® – Lightweight, Hi-Strength Material

The New Bionic Partition Uses Scalmalloy®, a Second-Generation Aluminium-Magnesium-Scandium Alloy Created by APWorks, an Airbus Group Subsidiary.APWorks makes proven aerospace technologies and innovations accessible to other industries, focusing on modern production processes such as additive layer manufacturing and advanced materials.

Scalmalloy® Lightweight, high-strength material (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Scalmalloy® Lightweight, high-strength material (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

One of these groundbreaking materials is Scalmalloy®. Specifically designed for use in 3D printing, it offers outstanding mechanical properties, meaning it can undergo significant stress and stretching before breaking. This is the first time it has been used on a large scale inside an aircraft component.

Photo courtesy of Airbus Group, Copyright © Airbus Group 2016

Photo courtesy of Airbus Group, Copyright © Airbus Group 2016

“Combining the benefits of metallic 3D printing with new materials like Scalmalloy® can greatly expand the possibilities for modern components. In the bionic partition, Scalmalloy® is proving its power for the aerospace sector.”Joachim Zettler, Managing Director Airbus APWorks

The Rise of Generative Design
A key element in the creation of the new bionic partition is the rapid evolution in generative design. This capitalises on the power of cloud computing to generate thousands of design alternatives that meet specific goals and constraints.

Generative design can explore new solutions that even experienced designers might not have considered, while improving design quality and performance. Because the designs are nearly impossible to manufacture using traditional methods, additive manufacturing techniques like 3D printing are critical to generative design’s success.

“Generative design, additive manufacturing and the development of new materials are already transforming the shape of manufacturing and innovative companies like Airbus are showing what is possible.” Jeff Kowalski, Chief technology officer at Autodesk

Airbus’ Bionic 3D Printing
The field of bionics, exploring the mechanics and structures of the natural world and investigating their potential applications in modern technology, has become a significant focus for Airbus. It has created a Bionics Network that connects its 3D printing experts to academic institutions at the forefront of research in the bionics field.

The combination of rapidly improving 3D printing with nature’s secrets is bound to open up new industrial horizons. Airbus' Bionic Network with partner universities is already developing several aviation-applicable ideas.  (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

The combination of rapidly improving 3D printing with nature’s secrets is bound to open up new industrial horizons. Airbus’ Bionic Network with partner universities is already developing several aviation-applicable ideas. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

“It isn’t as simple as copying nature,” explains Peter Sander of Emerging Technologies and Concepts at Airbus. “Successful bionics depends on establishing a deep understanding of natural materials and then working out how to apply that knowledge in the industrial world.”

Airbus’ capacity to use metal powders of high quality and strength is increasing. “These technologies will ultimately revolutionise the way we design and build aircraft, enabling improvements in fuel efficiency, passenger comfort and a drastic reduction in the environmental footprint of air transport overall,” highlights Sander.

“We are always looking to push the boundaries of new technologies and explore how we can best innovate.” Peter SanderEmerging Technologies and Concepts at Airbus

Taking 3D Metal Printing to the Next Level
Proof of these new technologies is a method called selective laser melting, through which thin layers of melted metal are put on top of each other. The technique allows the use of common industrial alloys, like steel or titanium in 3D printing, producing durable components with great accuracy and precision.

Partnering with Professor Claus Emmelmann, from Hamburg’s Technical University, and selective laser melting expert Frank Herzog, Peter Sander has now brought this technology to Airbus. To demonstrate its potential, the team printed a bionic titanium bracket for the A350 XWB.

2015 German Future Awards, from left to right: Airbus’ Peter Sander, Professor Claus Emmelmann, President of Germany Joachim Gauck, and 3D printing expert Frank Herzog. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

2015 German Future Awards, from left to right: Airbus’ Peter Sander, Professor Claus Emmelmann, President of Germany Joachim Gauck, and 3D printing expert Frank Herzog. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

This innovative collaboration project was nominated for the 2015 German Future Awards (Deutscher Zukunftspreis) and Airbus plans to launch series production using this 3D printing approach in 2016.

Airbus’ Bionic Network: Finding Answers in the World Around Us

Giant Danish water lilies are incredibly strong for something so thin. The solid honeycomb structure on the underside of this water lily enables it to support the weight of a small child. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Giant Danish water lilies are incredibly strong for something so thin. The solid honeycomb structure on the underside of this water lily enables it to support the weight of a small child. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Airbus' experts used very advanced scanners on the huge leaves and found that they contained something similar to the honeycomb structure used to maximise strength while minimising weight in aircraft. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Airbus’ experts used very advanced scanners on the huge leaves and found that they contained something similar to the honeycomb structure used to maximise strength while minimising weight in aircraft. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

The honeycomb structure of the water lilies is less regular and contains larger gaps than the structure applied for aircraft parts. Airbus is now exploring what combination of materials could translate into a new weight saving design. parts. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

The honeycomb structure of the water lilies is less regular and contains larger gaps than the structure applied for aircraft parts. Airbus is now exploring what combination of materials could translate into a new weight saving design. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

The first prototype structures based on the water lilies were created in plastic using 3D printers, and metal parts soon followed. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

The first prototype structures based on the water lilies were created in plastic using 3D printers, and metal parts soon followed. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Airbus' Bionic Network has also developed bio-retractable pivot bins to improve luggage bins. Based on the jaws of the angler fish, moray eel and sling-jaw wrasse, the solution allows for luggage bins with greater capacity and easier access without taking up much more cabin space. This is achieved through a low-cost and maintenance-free torsion spring. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Airbus’ Bionic Network has also developed bio-retractable pivot bins to improve luggage bins. Based on the jaws of the angler fish, moray eel and sling-jaw wrasse, the solution allows for luggage bins with greater capacity and easier access without taking up much more cabin space. This is achieved through a low-cost and maintenance-free torsion spring. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Furthermore, Airbus’ university partners are scouring nature for solutions to icing, the optimisation of air inlets, stronger wing fuselage joints and an adaptive trailing edge that would end the need for wing flaps. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Furthermore, Airbus’ university partners are scouring nature for solutions to icing, the optimisation of air inlets, stronger wing fuselage joints and an adaptive trailing edge that would end the need for wing flaps. (Photo courtesy of Airbus Group, Copyright © Airbus Group 2016)

Airbus Group: We Make it Fly
Airbus Group is a global pioneer in aeronautics, space and defence-related servies, creating cutting-edge technology.

The Airbus Group operates in more than 170 locations worldwide. Most of the Company’s order book and growing industrial footprint now lies beyond its European borders. Such examples can be seen in aircraft final assembly lines in Tianjin, China, and Mobile, Alabama (US). We also produce helicopters in Brazil, maintain research centres in Singapore, India, the US, China and Russia, and we run Maintenance, Repair and Overhaul (MRO) hubs on five continents.

(Top photo)-Photo courtesy of Airbus Group, Copyright © Airbus Group 2016

Source: Published by Airbus Group, Ref. www.airbusgroup.com/Airbus-stories

Add a Comment

Your email address will not be published. Required fields are marked *

+

ILDE

Please type the text above:

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>