Materials – Turning Down the Heat


By Karen Dunlap ([email protected]) | ORNL

Scientists at Oak Ridge National Laboratory and the University of Tennessee designed and demonstrated a method to make carbon-based materials that can be used as electrodes compatible with a specific semiconductor circuitry.
 
The work bridges nanoscale 3D printing and widely available processes for complementary metal-oxide-semiconductor, or CMOS, technologies to enable biosensors for biomedical applications.

Shown here is an on-chip carbonized electrode microstructure from a scanning electron microscope. Credit: ORNL, U.S. Dept. of Energy
Shown here is an on-chip carbonized electrode microstructure from a scanning electron microscope. Credit: ORNL, U.S. Dept. of Energy

3D printing electrodes on CMOS circuitry from a polymer precursor requires high, yet regulated, temperatures – typically around 900 degrees Celsius – to carbonize the electrode structure. The challenge is to avoid damaging the CMOS chip.
 
The team’s novel method, performed at the Center for Nanophase Materials Sciences at ORNL, used two photon polymerization and annealing processes to achieve and verify carbonization below 550 degrees.
 
“We’ve shown that you can convert a polymer to carbon directly on a chip in a way that can be useful for electrochemical sensing,” said ORNL’s Nickolay Lavrik.

About ORNL
UT-Battelle manages ORNL for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

Source: ORNL

Add a Comment

Your email address will not be published. Required fields are marked *

+

YErrT5

Please type the text above: